邮箱:xlwang@btbu.edu.cn
地址:北京市房山区北京工商大学良乡主校区东区bat365官网登录入口
个人简介
教授,博士生导师,自然科学处副处长,统计科学中心主任。现任中国现场统计研究会因果推断分会秘书长、北京生物统计BBA常务理事、中国统计教育高等教育分会理事,中国现场统计研究会高维数据分会,计算统计分会理事,人工智能+食品安全专家委员会委员等。
研究兴趣
统计因果推断、大数据分析、机器学习、贝叶斯统计及在食品安全、流行病学等应用统计研究。
主讲课程
主讲本科生课程《数据科学的统计基础》、双语《数理统计》,研究生课程《统计因果推断》、《复杂数据分析统计建模》等。
学习经历
北京大学,数学科学学院,概率论与数理统计,理学博士
北京师范大学,统计学院,概率论与数理统计,理学硕士
曲阜师范大学,数学科学学院,数学与应用数学,理学学士
工作经历
2020年至今 ,北京工商大学,bat365官网登录入口 教授
2010-2011年, 华盛顿大学,生物统计系 访问学者
2006-2020年, 北京邮电大学,理学院 讲师,副教授
主要获奖荣誉
课题论文获得第九届全国统计科学研究优秀成果一等奖
北京市高等教育教学成果奖一等奖”排名第五
研究生教育教学成果奖 北工商 二等奖
指导的研究生多人获得“国家奖学金”和“北京市优秀毕业生”
主要科研项目
1.因果推断中处理依赖潜在结果的因果效应评价与归因研究,北京市教委和北京市自然基金联合重点项目,2023-2026,主持
2.特色食品全链条质量安全特征风险评估和预测预警模型建立,国家重点研发计划-子课题,2020-2023,已结题,主持
3.食品安全缺失数据填补与决策事件关联统计推断,国家重点研发计划委托项目,已结题,主持
4.基于网络搜索数据的经济形势的统计建模与分析预测,全国统计科学研究项目 已结题,主持
5.统计因果推断及缺失数据统计分析,国家自然科学基金青年基金,已结题,主持
6.统计因果推断及混杂因素,国家自然科学基金天元基金,已结题,主持
主要学术成果
[1] Yang Q, Wang X L*, Cao X B, Liu S, Xie F, Li Y. Multi-classification of national fitness test grades based on statistical analysis and machine learning,PLOS ONE ,2024, https://doi.org/10.1371/journal.pone.0295674.
[2] Shi M, Chu Q, Wang X L*. Probabilistic human health risk assessment of trace elements exposure in crayfish. Journal of Food Composition and Analysis, 2023, 121: 105360.
[3] Chu Q, Li Y, Wang X L*. Bayesian inference of heavy metals exposure in crayfish for assessing human non–carcinogenic health risk. Food and Chemical Toxicology, 2023, 173: 113595.
[4] Wang X L. Theory and Application of Causal Inference and Bayesian Statistics. Beijing: Science Press, 2022.
[5] Zhang X, Wang X L*, Cao X B , Xiao, G X. Heavy element contents of vegetables and health-risk assessment in China. Science of The Total Environment, 2022, 828:154552.
[6] Li Y, Wang X L*, Du H, et al. Heavy metal accumulation and health risk assessment of crayfish in the middle and lower reaches of Yangtze River during 2015–2017. Environmental Monitoring and Assessment, 2022, 194(1): 1-11.
[7] Wang X L, Li Y, Jia J. Forecasting of COVID-2019 onset cases: a data-driven analysis in the early stage of delay. Environmental Science and Pollution Research, 2021, 28(16): 20240-20246.
[8] Wang X L, Wu J P, Yu B J, Dong F, Ma D, Xiao G X, Zhang C, Heavy metals in aquatic products and the health risk assessment to population,Environmental Science and Pollution Research, 2020, 27: 22708–22719.
[9] Wang X L, Zhang Y F, Zhang H, Li Y, Wei X F, Radio Frequency Signal Identification Learning Based on LSTM,Circuits, Systems, and Signal Processing, 2020. 39: 5514–5528.
[10] Yu B J, Wang X L*, Dong F, Xiao G X, Ma D,Heavy metal concentrations in aquatic organisms (fishes, shrimp and crabs) and health risk assessment in China, Marine Pollution Bulletin, 2020. 159:111505.
[11] Wang X L, Zhang Y, Geng Z, Liu Y, Guo L X, Xiao G X. Spatial analysis of heavy metals in meat products in China during 2015-2017. Food Control. 2019, 104(1): 174-180.
[12] Wang X L, Zhang Y F, Zhang H X, Wei X F, Wang G Y. Identification and authentication for wireless transmission security based on RF-DNA fingerprint. EURASIP Journal on Wireless Communications and Networking. 2019, 230;1-12.
[13] Wang X L, Zhou M Q, Jia J Z, Geng Z, Xiao G X. A Bayesian approach to real-time monitoring and forecasting of Chinese foodborne diseases. International Journal of Environmental Research and Public Health. 2018, 15(8): 1740-1753.
[14] Wang X L. Binomial Proportion Estimation in Longitudinal Data with Non-ignorable Non-response, Acta Mathe. Appli. Sinica, 2013, 29 (3): 623-630.
[15] Wang X L, Chen H, Geng Z, Zhou X H. Using Auxiliary Data for Binomial Parameter Estimation with Nonignorable Nonresponse. Communications in Statistics-Theory and Methods, 2012, 41: 1–11.
[16] Wang X L, Geng Z, Chen H, Xie X C. Detecting multiple confounders. Journal of Statistical Planning and Inference, 2009, 139(3):1073-1081.
[17] Wang X L, Geng Z, Zhao Q, Qiao Q,Comparison between estimates of the potential proportion with and without standardization for a non-confounder. Statistica Sinica. 2007, 17(4): 1643-1656.
[18] Geng Z, He Y B, Wang X L, Zhao Q. Bayesian method for learning graphical models with incompletely categorical data. Computational Statistics & Data Analysis. 2003, 44(1): 175-192.